Skip to main content

Automotive AI Market Fueled by $7 Billion Investment

The automotive technology market will continue to evolve as cognitive computing enhances the transportation sector. Self-learning artificial intelligence (AI) in automobiles is the key to unlocking the capabilities of autonomous cars and enhancing value to end users through virtual assistance.

This nascent technology offers original equipment manufacturers (OEMs) access to new revenue streams through licensing, partnerships and mobility services. Simultaneously, the use-case scenarios of self-learning AI in cars are drawing several IT vendors, Internet of Things (IoT) technology companies and mobile network service providers to the automotive industry.

The combined technologies have also attracted attention and investments from governments, due to its potential to improve urban lifestyles and add national and local economic development value.

Automotive AI Market Development

Frost & Sullivan -- which already offers market insights into power-trains, car-sharing and smart mobility management -- has recently released their latest analyses of artificial intelligence apps within vehicles.

By 2025, four levels of self-learning technology will disrupt the automotive industry, according to their latest market assessment. Level 4 self-learning car ownership will stimulate market growth, and create new partnerships with original equipment manufacturers (OEMs).

In fact, OEMs are making strategic investments or acquisitions for Level 3 and Level 4 self-learning technology -- Frost & Sullivan believes that there are already several prominent startups in the market.

"Technology companies are expected to be the new Tier I for OEMs for deep-learning technology," said Sistla Raghuvamsi, research analyst at Frost & Sullivan. "Google and NVIDIA will be key companies within this space, dominating the market by 2025."

Meanwhile, thirteen OEMs will be investing over $7 billion in the development of various AI technology use cases. In particular, Hyundai, Toyota, and GM will account for 53.4 percent of the total investment share.

Outlook for Automotive AI Advancement

The key challenge for technology developers is gathering the data required to train AI to support self-driving capabilities. That need is advancing artificial simulation research to test trained AI, as well as create low-cost level 2 systems for driver analytics and assistance that can eventually provide data for levels 3 and 4.

"High processing capability with low power consumption will be critical to enable various levels of self-learning cars," noted Raghuvamsi. "By 2025, level 4 self-learning cars will integrate home, work and commercial networks, enhancing the value to end users."

Popular posts from this blog

AI-Driven Data Center Liquid Cooling Demand

The rapid evolution of artificial intelligence (AI) and hyperscale cloud computing is fundamentally reshaping data center infrastructure, and liquid cooling is emerging as an indispensable solution. As traditional air-cooled systems reach their physical limits, the IT industry is under pressure to adopt more efficient thermal management strategies to meet growing demands, while complying with stringent environmental regulations. Liquid Cooling Market Development The latest ABI Research analysis reveals momentum in liquid cooling adoption. Installations are forecast to quadruple between 2023 and 2030. The market will reach $3.7 billion in value by the decade's end, with a CAGR of 22 percent. The urgency behind these numbers becomes clear when examining energy metrics: liquid cooling systems demonstrate 40 percent greater energy efficiency when compared to conventional air-cooling architectures, while simultaneously enabling ~300-500 percent increases in computational density per rac...