Skip to main content

Emerging $5.5B Market for Sensors in Wearable Tech

Sensors are an essential component of most Internet of Things (IoT) use-case scenarios. Sensors also enable the key applications in wearable devices. This is why made-for-wearable sensors are being developed around the world, and the market is already primed for significant growth.

According to the latest worldwide market study by IDTechEx Research, made-for-wearable sensors will represent 42 percent of all sensors in wearable devices in 2026 -- that's up from just 7 percent in 2015.

There will be a $5.5 billion market for sensors used in wearable technology applications by 2025. However, several key challenges must be overcome before these sensor technologies can realize their full potential.

Wearable sensor systems will help to drive market development. The textile and electronics industry has started to merge together around e-textiles. High-value sport and fitness applications are the current focus. Vertical industry apps will also include healthcare, home textiles, and industrial spaces in the next 2-5 years.


The IDTechEx study findings demonstrate that these sensor types will proliferate in the coming decade. As the number of wearable devices increase, deployed sensors used to detect motion, force and pressure will gain momentum, growing at a 40 percent CAGR.

This broad technology landscape is a challenge for product designers. With many different materials come varied requirements for connector types, electrical specifications and data algorithms.

In 2015, according to the IDTechEx assessment, half of all wearable sensors were based on MEMS technologies. Moreover, inertial measurement units (IMUs) are found in every smartwatch and fitness tracker.

However, the challenge is in turning raw data from these devices into useful, or actionable information. The solution is Sensor Fusion --it's the process of combining outputs from multiple sensors to gain more insight.

This in turn can be used to count steps and differentiate between activity types. It is here that MEMS IMUs see more use cases. For example, they are used alongside optical sensors to manage motion artifacts experienced in optical heart rate monitoring.

Popular posts from this blog

The AI Application Integration Challenge

Artificial intelligence (AI) has rapidly become the defining force in business technology development, but integrating AI into applications remains a formidable challenge. According to a recent Gartner survey, 77 percent of engineering leaders identify AI integration in apps as a major hurdle for their organizations. As demand for AI-powered solutions accelerates across every industry, understanding the tools, the barriers, and the opportunities is essential for business and technology leaders seeking to evolve. The Gartner survey highlights a key trend: while AI’s potential is widely recognized, the path to useful integration is anything but straightforward. IT leaders cite complexities in embedding AI models into existing software, managing data pipelines, ensuring security, and maintaining compliance as persistent obstacles. These challenges are compounded by a shortage of skilled AI engineers and the rapid evolution of AI technologies, which can outpace organizational readiness and...