Skip to main content

How to Extract Meaning and Value from M2M Data

Mobile network service providers are going to be inundated with machine-to-machine (M2M) data. Extracting meaning and value from that mass of raw information is a huge undertaking. Analytics software platforms and professional services are part of the solution.

ABI Research forecasts that the M2M analytics industry will grow a robust 53.1 percent over the next 5 years -- from $1.9 billion in 2013 to $14.3 billion in 2018.

The ABI forecast includes revenue segmentation for the five components that together enable analytics to be used in M2M services: including data integration, data storage, core analytics, data presentation, and associated professional services.

"Analytics will play a critical role in the evolution of M2M, serving as the foundation for an increasing number of M2M business cases," said Aapo Markkanen, senior analyst at ABI Research.

In essence, such analytics-driven business cases will be about making previously opaque physical assets part of the digital data universe. M2M has thus a very synergetic relationship with the wider big data space, with growth in one industry driving also growth in the other.

Significantly, the actual value of M2M data can vary greatly by the depth of delivered analysis. At the moment, most enterprises with relevant data assets are trying to migrate from descriptive and diagnostic insights to predictive analytics.

Mastering the predictive phase could then ultimately lead to the final, prescriptive phase of analytics.

Predictive analytics is becoming one of the hottest areas in the M2M value chain. Of today’s analytics establishment, SAP and IBM have woken up to the opportunity reasonably early.

Of the younger companies, Splunk is an example of a firm that could develop into a true Internet of Things powerhouse if it plays its cards right.

Given the far-reaching possibilities of machine learning, ABI says they're also expecting a major impact from players that successfully apply it to industrial settings. Mtell appears to be making strides in this field, and going forward Grok will also be one to watch.

Popular posts from this blog

Industrial Cloud Computing Apps Gain Momentum

In the manufacturing industry, cloud computing can help leaders improve their production efficiency by providing them with real-time data about their operations. This has gained the attention of the C-suite. Total forecast Industrial Cloud platform revenue in manufacturing will surpass $300 billion by 2033 with a CAGR of 22.57 percent, driven by solution providers enhancing platform interoperability while expanding partner ecosystems for application development. ABI Research found the cloud computing manufacturing market will grow over the next decade due to the adoption of new architectural frameworks that enhance data extraction and interoperability for manufacturers looking to maximize utility from their data. Industrial Cloud Computing Market Development "Historically, manufacturers have built out their infrastructure to include expensive data housing in the form of on-premises servers. The large initial upfront cost of purchasing, setting up, and maintaining these servers is

AI Semiconductor Revenue will Reach $119.4B

The Chief Information Officer (CIO) and/or the Chief Technology Officer (CTO) will guide Generative AI initiatives within the large enterprise C-Suite. They may already have the technical expertise and experience to understand the capabilities and limitations of Gen AI. They also have the authority and budget to make the necessary investments in infrastructure and talent to support Gen AI initiatives. Enterprise AI infrastructure is proven to be expensive to build, operate and maintain. That's why public cloud service provider solutions are often used for new AI use cases. AI Semiconductor Market Development Semiconductors designed to execute Artificial Intelligence (AI) workloads will represent a $53.4 billion revenue opportunity for the global semiconductor industry in 2023, an increase of 20.9 percent from 2022, according to the latest worldwide market study by Gartner. "The developments in generative AI and the increasing use of a wide range AI-based applications in data c

Demand for Quantum Computing as a Service

The enterprise demand for quantum computing is still in its early stages, growing slowly. As the technology becomes more usable, we may see demand evolve beyond scientific applications. The global quantum computing market is forecast to grow from $1.1 billion in 2022 to $7.6 billion in 2027, according to the latest worldwide market study by International Data Corporation (IDC). That's a five-year compound annual growth rate (CAGR) of 48.1 percent. The forecast includes base Quantum Computing as a Service, as well as enabling and adjacent Quantum Computing as a Service. However, this updated forecast is considerably lower than IDC's previous quantum computing forecast, which was published in 2021, due to lower demand globally. Quantum Computing Market Development In the interim, customer spend for quantum computing has been negatively impacted by several factors, including: slower than expected advances in quantum hardware development, which have delayed potential return on inve