Skip to main content

Huge Upside for Smart Transportation Technologies

While the global automotive and transportation industry seems laser-focused on exploring new upside opportunities associated with the Internet of Things (IoT), another cluster of technology research and development is about to emerge into the mainstream marketplace.

Artificial Intelligence (AI) -- in particular, Deep Learning based on neural network computing -- parallel processing and unassisted cloud-based crowd learning are propelling new innovations within the established consumer vehicle and commercial transport sectors.

According to the latest worldwide market study by ABI Research, two key technologies and associated use-cases are noteworthy. AI technology application areas include machine vision and speech recognition, both of which have huge relevance for the automotive and transportation sectors.

Exploring AI Use Case Scenarios

Virtual Assistants – Advanced agents knowing the driver's preferences and allowing natural language interaction within the vehicle and driving context. Apple Siri, Google Now, and Nuance Dragon represent early examples of in-vehicle integration and adaptation of virtual assistants. Microsoft announced intentions to develop an automotive-grade version of Cortana. The Nissan Intelligent Driving System (IDS) concept includes a virtual assistant.

Vehicle Automation – Advanced Driver Assistance Systems (ADAS) and driverless vehicles will heavily rely upon deep learning-based machine vision for identifying and recognizing pedestrians and vehicle types, as well as interpreting and predicting complex traffic situations.

Traffic Management Automation – Adaptive Traffic Lights, dynamic pricing for Electronic Toll Collection (ETC) and Road User Charging (RUC), and future holistic automated Intelligent Transport Systems (ITS) will be powered by advanced artificial intelligence, far exceeding the capabilities of human operators at traffic operation centers today.

Deep Learning within a Transportation Borg

AI is just beginning to populate the automotive industry news headlines, with recent announcements from numerous multinational vendors -- including Panasonic, Mitsubishi Electric and Siemens.

"AI is the latest hype in automotive, with an arms race taking place among car OEMs, Tier1 suppliers, Internet and IT players and silicon vendors to develop, control or acquire the deep learning technology which will drive disruptive change though both automation and advanced user interfaces and HMI. Apple recently poaching NVIDIA's deep learning expert is just one example of the AI war heating up," said Dominique Bonte, vice president at ABI Research.

ABI believes that the relevance of AI technology goes far beyond individual vehicles. Deep Learning intrinsically is a collective borg-like learning experience -- harnessing and harvesting the crowd intelligence of millions of vehicles to accelerate the machine learning cycles. The future potential applications are vast in scope.

Moreover, these complex systems also include intelligent roadside infrastructure and the data it generates from traffic cameras, road sensors and toll gates. This data assimilation will ultimately lead to far reaching convergence between connected driverless vehicles and ITS, resulting in holistic, remotely controlled and automatically reconfiguring closed-loop transportation networks with traffic throughput optimization heavily relying on intelligent demand-response approaches.

Popular posts from this blog

Mobility-as-a-Service Creates Disruptive Travel Options

Building on significant advances in big data, analytics, and the Internet of Things (IoT), more innovative transit service offerings aim to increase public transport ridership and reduce emissions or congestion within metropolitan areas. By providing these services through smartphone apps, the transit services also significantly increase user convenience, providing information on different human mobility offerings -- including public transport, ridesharing, and autonomous vehicles. Mobility-as-a-Service Market Development According to the latest market study by Juniper Research, Mobility-as-a-Service (MaaS) subscribers will generate $53 billion in revenue for MaaS platform providers by 2027 -- that's rising from $5.3 billion in 2021. Let's start with a basic definition. MaaS is the provision of multi-modal end-to-end travel services through single platforms, by which users can determine an optimal route and price. The study identified a monthly subscription model as key to incr

Hybrid Work: How to Enhance Employee Productivity

When you hire qualified talent for a key role and trust them to perform, you'll likely achieve the best outcome. Skilled and experienced people will deliver results, regardless of the challenges. That's a key lesson learned from the pandemic experience as most knowledge workers were asked to work from their homes. However, some resist returning to an open-plan office. It's unacceptable. Meanwhile, forward-thinking leaders decided a "return to normal" is undesirable, and in hindsight, everyone should aspire to be more accomodating than before. Therefore, location flexibility is okay. Hybrid Workforce Market Development How will people adapt to these changes? They'll apply the modern IT tools at their disposal. They'll learn new skills and thrive. Nearly 80 percent of employees are now successfully using online collaboration tools for work in 2021 -- that's up from just over half of workers in 2019, according to the latest market study by Gartner. This g

Robocall Mitigation Solutions to Halt Criminal Threats

If you answer the phone and hear a recorded message instead of a live person, it's likely a robocall. A robocall is a phone call that uses a computerized autodialer to deliver a pre-recorded message. In 2020, the U.S. Federal Trade Commission (FTC) received 2.8 million consumer complaints about robocalls. Offering solutions to robocalling and associated fraudulent business practices, computerized mitigation platforms are an integral part of the solution. Platforms that are focused on actionable systems to disrupt unsolicited and potentially criminal phone calls help telecom service providers and industry regulators. Issues of whether one-size-fits-all developments are sufficient to be effective across the spectrum need to be addressed, and whether a single telecom network operator working unilaterally with a third-party platform could compromise desired or mandatory industry-wide standards. Robocall Mitigation Market Development According to the latest worldwide market study by Jun