Skip to main content

Fintech Adopts Big Data and Cognitive Computing Apps

Given that the financial services sector thrives on large quantities of data, it is not surprising that new technology is expected to play a key role in this industry's digital transformation. Innovative and disruptive financial technology (Fintech) ventures will create new business models that drive progressive change.

Juniper Research has found that Fintech platform revenues for unsecured consumer loans issued using machine learning technology are set to grow by 960 percent during 2016 to 2021, rising to $17 billion globally. This growth is being driven by advances in big data analytics and cognitive computing.

Juniper's latest market study found that machine learning investment in Fintech will advance rapidly, owing to the highly data-driven nature of the market -- it's anticipated that AI integration is likely to produce substantial benefits.

Machine learning technology advances -- a subset of artificial intelligence (AI) -- have grown significantly since 2011, with substantial increases in related venture capital (VC) and research & development (R&D) investment.


Fintech Market Development Opportunities

For example, two Fintech start-up companies -- Kabbage and ZestFinance -- have collectively raised $500 million in funding. Meanwhile, vendors analyzed by Juniper have invested a total of $83 billion in R&D during 2015. Each of these vendors names AI as a part of their core business strategy.

Until recently, machine learning was too expensive and computationally time-intensive to break into the mainstream. Moreover, access to extensive data sets for algorithm training were somewhat limited.

Presently, the ability to use GPU (graphics processing unit) hardware for processing massive and highly available data sets, along with unlimited affordable computing power in the form of distributed architecture, has opened the market to a swathe of disruptive new players.

Big Data Analytics and Cognitive Computing Apps

AI and other forms of cognitive computing are particularly useful for risk-assessment purposes, where variables from numerous financial and non-financial datapoints are assessed by algorithms to approve loans.

This widens the addressable market for financial institutions considerably over traditional FICO credit scoring, where lack of credit history may mean loan rejection despite a real low risk for the lender.

"Where Big Data analytics offered retrospective business intelligence, machine learning offers predictive and even prescriptive capabilities," said Steffen Sorrell, senior analyst at Juniper Research. "Data is key -- and industries able to draw expertise from data scientists will be the first to capitalize on the AI opportunity."

Popular posts from this blog

Industrial Cloud Computing Apps Gain Momentum

In the manufacturing industry, cloud computing can help leaders improve their production efficiency by providing them with real-time data about their operations. This has gained the attention of the C-suite. Total forecast Industrial Cloud platform revenue in manufacturing will surpass $300 billion by 2033 with a CAGR of 22.57 percent, driven by solution providers enhancing platform interoperability while expanding partner ecosystems for application development. ABI Research found the cloud computing manufacturing market will grow over the next decade due to the adoption of new architectural frameworks that enhance data extraction and interoperability for manufacturers looking to maximize utility from their data. Industrial Cloud Computing Market Development "Historically, manufacturers have built out their infrastructure to include expensive data housing in the form of on-premises servers. The large initial upfront cost of purchasing, setting up, and maintaining these servers is

Demand for Quantum Computing as a Service

The enterprise demand for quantum computing is still in its early stages, growing slowly. As the technology becomes more usable, we may see demand evolve beyond scientific applications. The global quantum computing market is forecast to grow from $1.1 billion in 2022 to $7.6 billion in 2027, according to the latest worldwide market study by International Data Corporation (IDC). That's a five-year compound annual growth rate (CAGR) of 48.1 percent. The forecast includes base Quantum Computing as a Service, as well as enabling and adjacent Quantum Computing as a Service. However, this updated forecast is considerably lower than IDC's previous quantum computing forecast, which was published in 2021, due to lower demand globally. Quantum Computing Market Development In the interim, customer spend for quantum computing has been negatively impacted by several factors, including: slower than expected advances in quantum hardware development, which have delayed potential return on inve

Contact Center as a Service Gains AI Benefits

Enterprise leaders with large customer care organizations are exploring Artificial Intelligence (AI) applications to improve their online customer experience, increase operational efficiency, and reduce costs to improve profitability. Trained AI can be used to automate tasks, such as answering routine questions, freeing up contact center agents to focus on more complex inquiries. AI can also be applied to personalize the customer experience by recommending new offerings. Additionally, AI can be deployed to analyze vast amounts of existing customer data to identify support trends and patterns, which can be used to improve the overall customer experience. Customer Care AI Market Development Worldwide Contact Center (CC) and Conversational AI, including virtual assistant end-user spending is projected to total $18.6 billion in 2023 -- that's an increase of 16.2 percent from 2022, according to the latest market study by Gartner. "Near-term investment growth rates for CC and CC Con