Skip to main content

Data Science Automation Enables Complex Analytics

In a world of growing IT data that must be interpreted as meaningful business insights, enterprise organizations demand better tools to enable them to achieve their commercial goals. Cognitive computing can help to tackle this huge challenge, by augmenting human analysis.

More than 40 percent of data science tasks will be automated by 2020, resulting in increased productivity and broader usage of data and analytics by citizen data scientists, according to the latest worldwide market study by Gartner.

What's a 'citizen data scientist' role in this equation? It's a person who generates models that use advanced diagnostic analytics, or predictive and prescriptive capabilities, but whose primary job function is outside the field of statistics and complex analytics.

Data Scientist Tools Market Development

Citizen data scientists can bridge the gap between mainstream self-service analytics, by business users and the advanced analytics techniques of data scientists. They're able to perform sophisticated analysis that would previously have required more expertise -- now they can utilize advanced analytics, without having the skills of a real data scientist.

With data science continuing to emerge as a key differentiation across industries, almost every data and analytics software platform vendor is now focused on making 'simplification' a top goal through the automation of various tasks -- such as data integration and model building.

"Making data science products easier for people to use will increase vendors' reach across the enterprise as well as help overcome the skills gap," said Alexander Linden, research vice president at Gartner. "The key to simplicity is the automation of tasks that are repetitive, manual intensive and don't require deep data science expertise."

Gartner analysts believe that the increase in automation will also lead to significant productivity improvements for data scientists. Fewer data scientists will be needed to do the same amount of work, but every advanced data science project will still require at least one or two data scientists.

Outlook for Data Science Simplification

Therefore, citizen data scientists will surpass professional data scientists in the amount of advanced analysis produced by 2019. A vast amount of analysis produced by citizen data scientists will feed and impact the business, creating a more pervasive analytics-driven environment, while at the same time supporting the data scientists who can shift their focus onto more complex analysis.

According to the Gartner assessment, the result will be access to more data sources, including more complex data types; a broader and more sophisticated range of analytics capabilities; and the empowering of a large audience of analysts throughout the organization, with a simplified form of data science.

Popular posts from this blog

Demand for Quantum Computing as a Service

The enterprise demand for quantum computing is still in its early stages, growing slowly. As the technology becomes more usable, we may see demand evolve beyond scientific applications. The global quantum computing market is forecast to grow from $1.1 billion in 2022 to $7.6 billion in 2027, according to the latest worldwide market study by International Data Corporation (IDC). That's a five-year compound annual growth rate (CAGR) of 48.1 percent. The forecast includes base Quantum Computing as a Service, as well as enabling and adjacent Quantum Computing as a Service. However, this updated forecast is considerably lower than IDC's previous quantum computing forecast, which was published in 2021, due to lower demand globally. Quantum Computing Market Development In the interim, customer spend for quantum computing has been negatively impacted by several factors, including: slower than expected advances in quantum hardware development, which have delayed potential return on inve

AI Semiconductor Revenue will Reach $119.4B

The Chief Information Officer (CIO) and/or the Chief Technology Officer (CTO) will guide Generative AI initiatives within the large enterprise C-Suite. They may already have the technical expertise and experience to understand the capabilities and limitations of Gen AI. They also have the authority and budget to make the necessary investments in infrastructure and talent to support Gen AI initiatives. Enterprise AI infrastructure is proven to be expensive to build, operate and maintain. That's why public cloud service provider solutions are often used for new AI use cases. AI Semiconductor Market Development Semiconductors designed to execute Artificial Intelligence (AI) workloads will represent a $53.4 billion revenue opportunity for the global semiconductor industry in 2023, an increase of 20.9 percent from 2022, according to the latest worldwide market study by Gartner. "The developments in generative AI and the increasing use of a wide range AI-based applications in data c

Industrial Cloud Computing Apps Gain Momentum

In the manufacturing industry, cloud computing can help leaders improve their production efficiency by providing them with real-time data about their operations. This has gained the attention of the C-suite. Total forecast Industrial Cloud platform revenue in manufacturing will surpass $300 billion by 2033 with a CAGR of 22.57 percent, driven by solution providers enhancing platform interoperability while expanding partner ecosystems for application development. ABI Research found the cloud computing manufacturing market will grow over the next decade due to the adoption of new architectural frameworks that enhance data extraction and interoperability for manufacturers looking to maximize utility from their data. Industrial Cloud Computing Market Development "Historically, manufacturers have built out their infrastructure to include expensive data housing in the form of on-premises servers. The large initial upfront cost of purchasing, setting up, and maintaining these servers is