Skip to main content

How Machine Vision Revenues will Reach $193.8 Billion

In the past, machine vision was limited to highlight-controlled environments, costly sensor technology, and restrictive feature detection. Today, artificial intelligence (AI) is set to change the market, creating new classes of applications and significant new opportunities.

Machine vision is in the process of transition and dramatic expansion. Deep learning (DL) techniques are taking machine vision systems to next level, driving the mass adoption in several industries -- including the automotive, retail, consumer, industrial, and surveillance sectors.

Machine Vision Tech Market Development

DL-based machine vision marks a departure from other approaches used in the sector, which were more limited regarding their application. ABI Research now forecasts that machine vision technology will see a CAGR of 53 percent between 2018 and 2023 -- with $193.8 billion of annual revenue generated from services and hardware by the end of the forecast period.

Machine Vision vendors previously relied on hardcoded feature detection techniques, which meant they could only be applied in highly controlled environments -- such as inspecting a single type of object on a production line.

DL-based machine vision systems are far more flexible. One system can recognize many object types and be deployed in a range of circumstances. Also, cashier-less stores -- like Amazon Go -- demonstrate where cameras can track the movement of both customers and items around the retail store.

Another example of innovation would be the machine vision systems being employed to support autonomous driving. These systems can make distinctions between multiple types of road users.

"It is these new DL-based applications, among others, that are set to drive growth in the machine vision space, which would have been impossible using traditional machine vision techniques," said Jack Vernon, analyst at ABI Research.

If we look at some of the applications increasing adoption of machine vision systems, we will see that it is the innovations in deep learning that are driving their growth. Take, for instance, advanced driver assistance systems (ADAS), which are a core technology in autonomous driving.

By 2023, 37 million vehicles shipped will contain between level 2 to 5 ADAS. Over half of the 34.446 million level 2 ADAS systems shipped in that year will use DL-based machine vision, while the remaining level 3-5 vehicles will all use the approach -- this represents a massive growth in adoption of machine technology and will contribute enormously to the growth.

The same DL-based image recognition techniques used in machine vision are also being applied to sensors outside of traditional RGB (primary color) cameras, these will also have a transformative effect in those markets, and likely significantly increase adoption on those technologies.

For instance, the use of LiDAR systems will be incorporated into autonomous driving systems, on the back of the fact that deep learning enables machines to interpret LiDAR data in a more sophisticated way, allowing software to identify features of the landscape and other road users.

DL-based image recognition techniques are also going to change how many different sensor systems are going to be used. In the healthcare space, a number of startups and large research entities are building DL-based image recognition software that can identify health issues directly from MRI, radar, x-ray data.

These examples demonstrate how DL-based machine vision techniques are transforming not only the growth of RGB camera systems, but also how many other different sensors will be used in future.

Outlook for Machine Vision Applications

Few companies have fully settled on their favored hardware and software technology for machine vision applications across different verticals, creating opportunities and competition for many vendors in both spaces.

Consequently, savvy vendors are competing aggressively across the technology stack as potential customers for their solutions chase the high-value applications -- such as autonomous driving.

The scale of the opportunities have attracted significant investments in machine vision over the past four years. That's a trend that looks set to continue for another two years. As an example, in 2017, venture capitalists invested $2.7 billion in machine vision startups.

Popular posts from this blog

Artificial Intelligence Growth at an Inflection Point

Business technology investment no longer follows a predictable path to growth. The global venture capital (VC) investment in artificial intelligence (AI) was close to its peak in 2021 reaching $22.3 billion, according to the latest worldwide market study by ABI Research. This is just $400 million shy of the historical high of $22.7 billion recorded in 2019. Compared to the $15 billion recorded in 2020, the market made a remarkable recovery, with a 48.5 percent year-on-year growth. Will the future AI marketplace return to stable growth, or will it remain volatile? Artificial Intelligence Market Development "COVID-19 greatly accelerated the speed of digital transformation within the enterprise. Businesses are looking for solutions to work processes automation, customer care, due diligence, transcription and translation, and sales and marketing enablement tools," said Lian Jye Su, research director at ABI Research . At the same time, COVID-19 led to the Great Resignation of 2021

How a Digital-First CEO Leads Transformation

Some leaders reject the notion that "wait and see" is the best response to disruptive change. Savvy senior executives are already driving digital business transformation throughout their organization in an effort to gain a bold strategic advantage. According to the latest market study by International Data Corp (IDC), Digital-First CEOs plan to drive at least half of their income from digital business products, services, and experiences by 2027 -- that's ahead of the market average of 39 percent. Driven by their response to the COVID-19 pandemic, these business leaders have changed how they think about the relationship between business and technology, and how they approach the next digital transformation era -- from scaling digital technology to guiding a viable digital business. Digital Business Market Development IDC defines digital business as value creation based on technology, which entails: 1) Automated customer-facing processes and internal operations; 2) Provision

Digital Solutions for Industrial & Manufacturing Firms

Executive leaders of fast-moving consumer goods (FMCG) are seeking guidance on how to apply new business technology in their manufacturing operations. CIOs and CTOs are tasked with gaining insight into the best solutions for digital transformation. ABI Research evaluated the impact politics, regulation, the economy, supply chain, ESG, and technology are having on FMCG, pharma, producers of steel, chemicals, pulp and paper -- as well as the mining and oil & gas sectors. Digital Transformation Market Development "Our assessment found that the FMCG sector is under pressure from all sides," says Michael Larner, industrial & manufacturing research director at ABI Research . Securing raw materials is challenging considering lockdowns in China and limited grain supplies from Ukraine. Supply shocks are raising input costs, and operating costs are rising with higher energy costs coupled with the pressure to pay higher wages and work sustainably. "We all hoped that with th