Skip to main content

How Machine Vision Revenues will Reach $193.8 Billion

In the past, machine vision was limited to highlight-controlled environments, costly sensor technology, and restrictive feature detection. Today, artificial intelligence (AI) is set to change the market, creating new classes of applications and significant new opportunities.

Machine vision is in the process of transition and dramatic expansion. Deep learning (DL) techniques are taking machine vision systems to next level, driving the mass adoption in several industries -- including the automotive, retail, consumer, industrial, and surveillance sectors.

Machine Vision Tech Market Development

DL-based machine vision marks a departure from other approaches used in the sector, which were more limited regarding their application. ABI Research now forecasts that machine vision technology will see a CAGR of 53 percent between 2018 and 2023 -- with $193.8 billion of annual revenue generated from services and hardware by the end of the forecast period.

Machine Vision vendors previously relied on hardcoded feature detection techniques, which meant they could only be applied in highly controlled environments -- such as inspecting a single type of object on a production line.

DL-based machine vision systems are far more flexible. One system can recognize many object types and be deployed in a range of circumstances. Also, cashier-less stores -- like Amazon Go -- demonstrate where cameras can track the movement of both customers and items around the retail store.

Another example of innovation would be the machine vision systems being employed to support autonomous driving. These systems can make distinctions between multiple types of road users.

"It is these new DL-based applications, among others, that are set to drive growth in the machine vision space, which would have been impossible using traditional machine vision techniques," said Jack Vernon, analyst at ABI Research.

If we look at some of the applications increasing adoption of machine vision systems, we will see that it is the innovations in deep learning that are driving their growth. Take, for instance, advanced driver assistance systems (ADAS), which are a core technology in autonomous driving.

By 2023, 37 million vehicles shipped will contain between level 2 to 5 ADAS. Over half of the 34.446 million level 2 ADAS systems shipped in that year will use DL-based machine vision, while the remaining level 3-5 vehicles will all use the approach -- this represents a massive growth in adoption of machine technology and will contribute enormously to the growth.

The same DL-based image recognition techniques used in machine vision are also being applied to sensors outside of traditional RGB (primary color) cameras, these will also have a transformative effect in those markets, and likely significantly increase adoption on those technologies.

For instance, the use of LiDAR systems will be incorporated into autonomous driving systems, on the back of the fact that deep learning enables machines to interpret LiDAR data in a more sophisticated way, allowing software to identify features of the landscape and other road users.

DL-based image recognition techniques are also going to change how many different sensor systems are going to be used. In the healthcare space, a number of startups and large research entities are building DL-based image recognition software that can identify health issues directly from MRI, radar, x-ray data.

These examples demonstrate how DL-based machine vision techniques are transforming not only the growth of RGB camera systems, but also how many other different sensors will be used in future.

Outlook for Machine Vision Applications

Few companies have fully settled on their favored hardware and software technology for machine vision applications across different verticals, creating opportunities and competition for many vendors in both spaces.

Consequently, savvy vendors are competing aggressively across the technology stack as potential customers for their solutions chase the high-value applications -- such as autonomous driving.

The scale of the opportunities have attracted significant investments in machine vision over the past four years. That's a trend that looks set to continue for another two years. As an example, in 2017, venture capitalists invested $2.7 billion in machine vision startups.

Popular posts from this blog

AI Semiconductor Revenue will Reach $119.4B

The Chief Information Officer (CIO) and/or the Chief Technology Officer (CTO) will guide Generative AI initiatives within the large enterprise C-Suite. They may already have the technical expertise and experience to understand the capabilities and limitations of Gen AI. They also have the authority and budget to make the necessary investments in infrastructure and talent to support Gen AI initiatives. Enterprise AI infrastructure is proven to be expensive to build, operate and maintain. That's why public cloud service provider solutions are often used for new AI use cases. AI Semiconductor Market Development Semiconductors designed to execute Artificial Intelligence (AI) workloads will represent a $53.4 billion revenue opportunity for the global semiconductor industry in 2023, an increase of 20.9 percent from 2022, according to the latest worldwide market study by Gartner. "The developments in generative AI and the increasing use of a wide range AI-based applications in data c

Demand for Quantum Computing as a Service

The enterprise demand for quantum computing is still in its early stages, growing slowly. As the technology becomes more usable, we may see demand evolve beyond scientific applications. The global quantum computing market is forecast to grow from $1.1 billion in 2022 to $7.6 billion in 2027, according to the latest worldwide market study by International Data Corporation (IDC). That's a five-year compound annual growth rate (CAGR) of 48.1 percent. The forecast includes base Quantum Computing as a Service, as well as enabling and adjacent Quantum Computing as a Service. However, this updated forecast is considerably lower than IDC's previous quantum computing forecast, which was published in 2021, due to lower demand globally. Quantum Computing Market Development In the interim, customer spend for quantum computing has been negatively impacted by several factors, including: slower than expected advances in quantum hardware development, which have delayed potential return on inve

Industrial Cloud Computing Apps Gain Momentum

In the manufacturing industry, cloud computing can help leaders improve their production efficiency by providing them with real-time data about their operations. This has gained the attention of the C-suite. Total forecast Industrial Cloud platform revenue in manufacturing will surpass $300 billion by 2033 with a CAGR of 22.57 percent, driven by solution providers enhancing platform interoperability while expanding partner ecosystems for application development. ABI Research found the cloud computing manufacturing market will grow over the next decade due to the adoption of new architectural frameworks that enhance data extraction and interoperability for manufacturers looking to maximize utility from their data. Industrial Cloud Computing Market Development "Historically, manufacturers have built out their infrastructure to include expensive data housing in the form of on-premises servers. The large initial upfront cost of purchasing, setting up, and maintaining these servers is