Skip to main content

How Machine Vision Revenues will Reach $193.8 Billion

In the past, machine vision was limited to highlight-controlled environments, costly sensor technology, and restrictive feature detection. Today, artificial intelligence (AI) is set to change the market, creating new classes of applications and significant new opportunities.

Machine vision is in the process of transition and dramatic expansion. Deep learning (DL) techniques are taking machine vision systems to next level, driving the mass adoption in several industries -- including the automotive, retail, consumer, industrial, and surveillance sectors.

Machine Vision Tech Market Development

DL-based machine vision marks a departure from other approaches used in the sector, which were more limited regarding their application. ABI Research now forecasts that machine vision technology will see a CAGR of 53 percent between 2018 and 2023 -- with $193.8 billion of annual revenue generated from services and hardware by the end of the forecast period.

Machine Vision vendors previously relied on hardcoded feature detection techniques, which meant they could only be applied in highly controlled environments -- such as inspecting a single type of object on a production line.

DL-based machine vision systems are far more flexible. One system can recognize many object types and be deployed in a range of circumstances. Also, cashier-less stores -- like Amazon Go -- demonstrate where cameras can track the movement of both customers and items around the retail store.

Another example of innovation would be the machine vision systems being employed to support autonomous driving. These systems can make distinctions between multiple types of road users.

"It is these new DL-based applications, among others, that are set to drive growth in the machine vision space, which would have been impossible using traditional machine vision techniques," said Jack Vernon, analyst at ABI Research.

If we look at some of the applications increasing adoption of machine vision systems, we will see that it is the innovations in deep learning that are driving their growth. Take, for instance, advanced driver assistance systems (ADAS), which are a core technology in autonomous driving.

By 2023, 37 million vehicles shipped will contain between level 2 to 5 ADAS. Over half of the 34.446 million level 2 ADAS systems shipped in that year will use DL-based machine vision, while the remaining level 3-5 vehicles will all use the approach -- this represents a massive growth in adoption of machine technology and will contribute enormously to the growth.

The same DL-based image recognition techniques used in machine vision are also being applied to sensors outside of traditional RGB (primary color) cameras, these will also have a transformative effect in those markets, and likely significantly increase adoption on those technologies.

For instance, the use of LiDAR systems will be incorporated into autonomous driving systems, on the back of the fact that deep learning enables machines to interpret LiDAR data in a more sophisticated way, allowing software to identify features of the landscape and other road users.

DL-based image recognition techniques are also going to change how many different sensor systems are going to be used. In the healthcare space, a number of startups and large research entities are building DL-based image recognition software that can identify health issues directly from MRI, radar, x-ray data.

These examples demonstrate how DL-based machine vision techniques are transforming not only the growth of RGB camera systems, but also how many other different sensors will be used in future.

Outlook for Machine Vision Applications

Few companies have fully settled on their favored hardware and software technology for machine vision applications across different verticals, creating opportunities and competition for many vendors in both spaces.

Consequently, savvy vendors are competing aggressively across the technology stack as potential customers for their solutions chase the high-value applications -- such as autonomous driving.

The scale of the opportunities have attracted significant investments in machine vision over the past four years. That's a trend that looks set to continue for another two years. As an example, in 2017, venture capitalists invested $2.7 billion in machine vision startups.

Popular posts from this blog

Mobility-as-a-Service Creates Disruptive Travel Options

Building on significant advances in big data, analytics, and the Internet of Things (IoT), more innovative transit service offerings aim to increase public transport ridership and reduce emissions or congestion within metropolitan areas. By providing these services through smartphone apps, the transit services also significantly increase user convenience, providing information on different human mobility offerings -- including public transport, ridesharing, and autonomous vehicles. Mobility-as-a-Service Market Development According to the latest market study by Juniper Research, Mobility-as-a-Service (MaaS) subscribers will generate $53 billion in revenue for MaaS platform providers by 2027 -- that's rising from $5.3 billion in 2021. Let's start with a basic definition. MaaS is the provision of multi-modal end-to-end travel services through single platforms, by which users can determine an optimal route and price. The study identified a monthly subscription model as key to incr

Robocall Mitigation Solutions to Halt Criminal Threats

If you answer the phone and hear a recorded message instead of a live person, it's likely a robocall. A robocall is a phone call that uses a computerized autodialer to deliver a pre-recorded message. In 2020, the U.S. Federal Trade Commission (FTC) received 2.8 million consumer complaints about robocalls. Offering solutions to robocalling and associated fraudulent business practices, computerized mitigation platforms are an integral part of the solution. Platforms that are focused on actionable systems to disrupt unsolicited and potentially criminal phone calls help telecom service providers and industry regulators. Issues of whether one-size-fits-all developments are sufficient to be effective across the spectrum need to be addressed, and whether a single telecom network operator working unilaterally with a third-party platform could compromise desired or mandatory industry-wide standards. Robocall Mitigation Market Development According to the latest worldwide market study by Jun

Why a Distributed Workforce will Raise Productivity

While most senior executives at progressive organizations have already evolved their human resource policies to accommodate employee desire for flexible working models, others still resist change. Unfortunately, many of the laggards are now experiencing the "Great Resignation" phenomenon. The global pandemic required business leaders to rethink when, where, and how their knowledge workers and front-line employees perform their work. Yet even with the ongoing pandemic recovery slowly underway, some organizations are still trying to determine their workforce approach. According to the latest worldwide market study and recent survey data from International Data Corporation (IDC), stability and geography will likely define the balance of future work strategies. Distributed Workforce Market Development On a global basis, physical office sites are expected to be the dominant location for work as legacy organizations eventually find themselves in a more stable environment. However,