Skip to main content

Pharmaceutical Companies Explore New AI Applications

How can artificial intelligence (AI) technology improve traditional medicine? With 97 percent of all drug discovery programs reportedly failing, the development of a single new therapeutic involves an average cost of $2.6 billion. Helping to improve that process is a huge upside opportunity.

Today, the complex research framework that's involved in the discovery and development of new therapeutic products makes drug innovation an extremely laborious process, according to the latest worldwide market study by Frost & Sullivan.

Pharmaceutical AI Market Development

More than 60 percent of known diseases remain untreatable. Meanwhile, life sciences companies are making progress in the fields of gene and cell therapies, omics technologies, and smart molecules approaches, creating the need for advanced, cost-effective technologies that can parse large quantities of data.

"Pharmaceutical companies are increasingly recognizing the value of deploying AI-based platforms that can leverage data regarding gene mutations, protein targets, signaling pathways, disease events, and clinical trials to find hidden drug-disease correlations,” said Cecilia Van Cauwenberghe, senior analyst at Frost & Sullivan.

This technology will enable scientists to derive structured and unstructured data from multiple sources as never before. Moreover, strategic collaborations with IT vendors can help pharmaceutical companies establish a robust, AI-based pipeline as part of their portfolios and address new therapeutic areas.

AI-driven tools are encouraging companies to develop therapies for severely underserved areas and are also paving the way for precision medicine through a stratified therapeutics discovery and development approach.

Collaborations among database holders, AI developers, and drug manufacturers will facilitate the early development of multiple therapeutics, even those focused on treating rare and chronic diseases.

The leading companies are also empowered to make the most of scientific results and learning systems synergy to ensure a successful clinical translation of therapeutic, diagnostic, and theranostic developments. Some of the key applications of AI technologies in pharmaceuticals include:

  • Drug development: Aids in disease modeling, drug design and development, lead identification, and drug repurposing.
  • Candidates validation: Helps design and run pre-clinical trials, in silico/in vitro/in vivo studies, and investigational new drug (IND) process.
  • Clinical trials: Supports all processes, from designing the trial to patient identification through data collection, analysis, and report generation.
  • Regulatory approval: Facilitates the approval of application and process, labeling, and safety updates.
  • Precision medicine: Accelerates the development of preventive and personalized care, treatment surveillance, and omics adaptive models.

Outlook for Medical AI Application Growth

"Overall, there is a profound and growing scientific understanding of many metabolic and signaling pathways, especially at molecular and genomic levels, which encourages the use of sophisticated technologies to develop groundbreaking therapies," noted Van Cauwenberghe.

As the underlying causes of many diseases remain vague and imprecise, artificial intelligence-oriented approaches have emerged as the ideal mechanisms for finding novel treatments.

Popular posts from this blog

Industrial and Manufacturing Technology Growth

In an evolving era of rapid advancement, market demand for innovative technology in the industrial and manufacturing sectors is skyrocketing. Leaders are recognizing the immense potential of digital transformation and are driving initiatives to integrate technologies into their business operations.  These initiatives aim to enhance efficiency, reduce costs, and ultimately drive growth and competitiveness in an increasingly digital business upward trajectory. The industrial and manufacturing sectors have been the backbone of the Global Networked Economy, contributing $16 trillion in value in 2021. Industrial and Manufacturing Tech Market Development   This growth represents a 20 percent increase from 2020, highlighting the resilience and adaptability of these sectors in the face of unprecedented challenges, according to the latest worldwide market study by ABI Research . The five largest manufacturing verticals -- automotive, computer and electronic, primary metal, food, and machinery -

Rise of AI-Enabled Smart Traffic Management

The demand for smart traffic management systems has grown due to rising urban populations and increasing vehicle ownership. With more people and cars concentrated in cities, problems like traffic congestion, air pollution, and greenhouse gas emissions are pressing issues. Since the early 2000s, government leaders have been exploring ways to leverage advances in IoT connectivity, sensors, artificial intelligence (AI), and data analytics to address these transportation challenges. The concept of a Smart City emerged in the 2010s, with smart mobility and intelligent traffic management as key components.  Smart Traffic Management Market Development Concerns about continued climate change, as well as cost savings from improved traffic flow, have further motivated local government investment in these advanced systems. According to the latest worldwide market study by Juniper Research, they found that by 2028, smart traffic management investment will be up by 75 percent from a 2023 figure of

GenAI Revolution: The Future of B2B Sales Apps

When B2B buyers consider a purchase they spend just 17 percent of that time meeting with vendors. When they are comparing multiple suppliers‚ time spent with any one salesperson is 5 or 6 percent. Self-directed B2B buyer online research has already changed procurement. IT vendors are less likely to be involved in solution assessment. Now, more disruptive changes are on the horizon. By 2028, 60 percent of B2B seller work will be executed through conversational user interfaces via Generative Artificial Intelligence sales technologies -- that's up from less than 5 percent in 2023, according to Gartner. Generative AI Market Development "Sales operations leaders and their technology teams must prepare for the convergence of new forms of artificial intelligence, dynamic process automation, and reinvented deal-planning activities that will transform the sales function," said Adnan Zijadic, director analyst at Gartner . According to the Gartner assessment, Generative AI (GenAI) s