Skip to main content

Enterprise Demand for Agile, Data-Centric Architectures

Augmented analytics, continuous intelligence and explainable artificial intelligence (AI) are among the top trends in big data and analytics that have significant disruptive potential over the next three to five years, according to the latest worldwide market study by Gartner.

"The size, complexity, distributed nature of data, speed of action and the continuous intelligence required by digital business means that rigid and centralized architectures and tools break down,” said Donald Feinberg, vice president at Gartner. “The continued survival of any business will depend upon an agile, data-centric architecture that responds to the constant rate of change."

Gartner recommends that data and analytics leaders collaborate with senior business leaders about their critical business priorities and explore the ten top related trends.

Augmented Analytics

Augmented analytics is the next wave of disruption in the data and analytics market. It uses machine learning (ML) and AI techniques to transform how analytics content is developed, consumed and shared.

By 2020, augmented analytics will be a dominant driver of new purchases of analytics and business intelligence (BI), as well as data science and ML platforms, and of embedded analytics. Data and analytics leaders should plan to adopt augmented analytics as platform capabilities mature.

Augmented Data Management

Augmented data management leverages ML capabilities and AI engines to make enterprise information management categories including data quality, metadata management, master data management, data integration as well as database management systems (DBMSs) self-configuring and self-tuning.

It is automating many of the manual tasks and allows less technically skilled users to be more autonomous using data. It also allows highly skilled technical resources to focus on higher value tasks.

Augmented data management converts metadata from being used for audit, lineage and reporting only, to powering dynamic systems. Metadata is changing from passive to active and is becoming the primary driver for all AI and ML.

Through to the end of 2022, data management manual tasks will be reduced by 45 percent through the addition of ML and automated service-level management.

Continuous Intelligence

By 2022, more than half of major new business systems will incorporate continuous intelligence that uses real-time context data to improve decisions.

Continuous intelligence is a design pattern in which real-time analytics are integrated within a business operation, processing current and historical data to prescribe actions in response to events. It provides decision automation or decision support.

Continuous intelligence leverages multiple technologies such as augmented analytics, event stream processing, optimization, business rule management and ML.

Explainable AI

AI models are increasingly deployed to augment and replace human decision making. However, in some scenarios, businesses must justify how these models arrive at their decisions. To build trust with users and stakeholders, application leaders must make these models more interpretable and explainable.

Unfortunately, most of these advanced AI models are complex black boxes that are not able to explain why they reached a specific recommendation or a decision. Explainable AI in data science and ML platforms, for example, auto-generates an explanation of models in terms of accuracy, attributes, model statistics and features in natural language.

Graph Analytics

Graph analytics is a set of analytic techniques that allow for the exploration of relationships between entities of interest such as organizations, people and transactions.

The application of graph processing and graph DBMSs will grow at 100 percent annually through 2022 to continuously accelerate data preparation and enable more complex and adaptive data science.

Graph data stores can efficiently model, explore and query data with complex interrelationships across data silos, but the need for specialized skills has limited their adoption to date.

Graph analytics will grow in the next few years due to the need to ask complex questions across complex data, which is not always practical or even possible at scale using SQL queries.

Data Fabric

Data fabric enables frictionless access and sharing of data in a distributed data environment. It enables a single and consistent data management framework, which allows seamless data access and processing by design across otherwise siloed storage.

Through 2022, bespoke data fabric designs will be deployed primarily as a static infrastructure, forcing organizations into a new wave of cost to completely re-design for more dynamic data mesh approaches.

NLP Conversational Analytics

By 2020, 50 percent of analytical queries will be generated via search, natural language processing (NLP) or voice, or will be automatically generated. The need to analyze complex combinations of data and to make analytics accessible to everyone in the organization will drive broader adoption, allowing analytics tools to be as easy as a search interface or a conversation with a virtual assistant.

Commercial AI and ML

Gartner predicts that by 2022, 75 percent of new end-user solutions leveraging AI and ML techniques will be built with commercial solutions rather than open source platforms.

Commercial vendors have now built connectors into the Open Source ecosystem and they provide the enterprise features necessary to scale and democratize AI and ML, such as project & model management, reuse, transparency, data lineage, and platform cohesiveness and integration that Open Source technologies lack.

Blockchains

The core value proposition of blockchain and distributed ledger technologies is providing decentralized trust across a network of untrusted participants. The potential ramifications for analytics use cases are significant, especially those leveraging participant relationships and interactions.

It will be several years before four or five major blockchain technologies become dominant. Until then, technology end users will be forced to integrate with the blockchain technologies and standards dictated by their dominant customers or networks. This includes integration with your existing data and analytics infrastructure.

The costs of integration may outweigh any potential benefit. Blockchains are a data source, not a database, and will not replace existing data management technologies.

Persistent Memory Servers

New persistent-memory technologies will help reduce costs and complexity of adopting in-memory computing (IMC)-enabled architectures. Persistent memory represents a new memory tier between DRAM and NAND flash memory that can provide cost-effective mass memory for high-performance workloads.

It has the potential to improve application performance, availability, boot times, clustering methods and security practices while keeping costs under control. It will also help organizations reduce the complexity of their application and data architectures by decreasing the need for data duplication.

Popular posts from this blog

How Data and Analytics Drive Business Growth

Senior executives in the world’s largest and most complex organizations will develop the insights required to achieve lasting Digital Transformation. Gartner has identified a model for digital business growth that binds together data, analytics, technology, and forward-looking transformation capabilities. The Gartner Research Board said that data and analytics (D&A) leaders are uniquely positioned to drive this strategic organizational change that will make their companies behave like 'digital native' leaders.  "The most advanced and successful D&A leaders are driving new opportunities to use digital capabilities – often data and analytics products – to capture value. Those opportunities should directly connect to the business priorities," said Mario Faria, vice president at Gartner . Digital Business Market Development At the same time, some leaders are using digital and D&A to create whole new business models. These leaders – which Gartner named the CxO

Anywhere, Anytime Workplace Demand for SASE

The ongoing adoption of flexible working models within the enterprise market has significant implications for typical IT organizations that must now support knowledge workers and front-line employees that operate outside the corporate network perimeter. The global COVID-19 pandemic created IT networking and security challenges. The expansion of the distributed workforce, an increasing reliance on cloud computing infrastructure, and the requirement to securely connect online employees -- wherever they choose to work, at any given moment in time. Legacy IT solutions that have rigid network underlays and a requirement for on-premises infrastructure cannot adequately deal with these trends. This 'Anywhere, Anytime Workplace' led to demand for new Secure Access Service Edge (SASE) solutions, with networking and security delivered as-a-service. Anywhere, Anytime Workplace Market Development   Although converging networking and security capabilities offer enterprises a promising solut

The Metaverse Raised Virtual Reality Interest

After years of slow growth and limited use cases, the Virtual Reality (VR) market is now forecast to grow significantly over the next five years. Consumer interest in VR games and media continues to grow after the COVID-19 pandemic accelerated activity. At the same time, the need for employee enablement and immersive content within the enterprise environment remains strong. According to the latest market study by ABI Research, over 90 million Head Mounted Display (HMD) shipments in 2027 will drive total VR market revenues to reach over $95 billion across hardware, software, and services. Virtual Reality Market Development "The virtual reality market is no stranger to false starts, with identifiable efforts in VR dating back to the 1980s and 1990s. While the technology never found purchase results, the increased capability of VR hardware combined with the demand for immersive content in numerous markets, presents a significant opportunity," says Eric Abbruzzese, research direc